User Sentiment Analysis of the ChatGPT Application on Google Play Store using the Naïve Bayes Algorithm

Main Article Content

Muthmainnah
Rajwa Fakhira
siti nurhalimah

Abstract

User reviews on the Google Play Store reflect public perceptions and satisfaction toward the ChatGPT AI application. This study aims to analyze user sentiment using the Multinomial Naïve Bayes algorithm. The research follows the stages of the Knowledge Discovery in Database (KDD) process, including data selection, preprocessing, transformation, data mining, and evaluation. A total of 1,000 reviews were classified into three sentiment categories—positive, negative, and neutral—and tested using data split ratios of 50:50, 70:30, and 80:20. The best performance was achieved with the 80:20 ratio, producing an accuracy of 94%, precision of 96%, and recall of 99% for positive sentiment. These findings indicate that the Naïve Bayes algorithm can effectively classify user sentiment and provide valuable insights into public perceptions of the quality and performance of the ChatGPT application.





 


Article Details

Section
Articles

References

[1] Kaeren and Andrianingsih, “Analisis Sentimen Aplikasi Linkaja di Google Play Store Menggunakan Algoritma Naive Bayes dan Random Forest,” J. Ris. dan Apl. Mhs. Inform., vol. 06, no. 02, p. hal 438-447, 2025.

[2] A. Iskoko, I. Tahyudin, and Purwadi, “Analisis Sentimen Ulasan Pengguna Aplikasi Sinaga Mobile pada Google Play Store Menggunakan Algoritma Naive Bayes Sentiment Analysis of Sinaga Mobile App User Reviews on Google Play Store Using Naive Bayes Algorithm,” J. Pendidik. dan Teknol. Indones., vol. 5, no. 6, p. hal 1635-1645, 2025.

[3] F. Fatmawati, B. Irawan, and A. Bahtiar, “Analisis Sentimen Pengguna Aplikasi Shejek Berdasarkan Ulasan Di Google Play Store Menggunakan Metode Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2976–2981, 2024, doi: 10.36040/jati.v8i3.9607.

[4] Wahyudi, R. Kurniawan, and Y. A. Wijaya, “Analisis Sentimen Pengguna Terhadap Aplikasi BLU BCA di Playstore Menggunakan Algoritma Naive Bayes (Studi Kasus Sentimen Pengguna Terhadao Pengalaman Aplikasi BLU BCA),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, p. hal 2511-2517, 2024.

[5] D. Fristtikasari, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi Kitalulus pada Ulasan Google Play Store Menggunakan Metode Naïve Bayes,” J. Teknol. Inform. dan Komput., vol. 10, no. 2, pp. 458–473, 2024, doi: 10.37012/jtik.v10i2.2244.

[6] D. Azarine, N. Rahaningsih, and R. D. Dana, “Analisis Sentimen Terhadap Pengguna Aplikasi Jamsostek Mobile pada Google Play Store Menggunakan Metode Naïve Bayes,” Media Inform., vol. 24, no. 1, pp. 13–21, 2025, doi: 10.37595/mediainfo.v24i1.316.

[7] W. S. Gemilang, Purwantoro, and Carudin, “Analisis Sentimen Pengguna Instagram pada Calon Presiden 2024 Menggunakan Algoritma Support Vector Machine,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, p. hal 2849-2855, 2024.

[8] S. A. Helmayanti, F. Hamimi, and R. Y. Fa’rifah, “Penerapan Algoritma TF-IDF dan Naive Bayes untuk Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Flip pada Google Play Store,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 3, p. hal 1822-1834, 2023.

[9] R. S. Nuraini, D. Krisbiantoro, M. Imron, and P. Subarkah, “Analaisis Sentimen Pengguna Aplikasi Agoda di Google Play Store Menggunakan Algoritma Naive Bayes,” J. Inf. Syst. Manag., vol. 7, no. 1, p. hal 24-29, 2025.

[10] I. B. Setiawan, J. Maulindar, and Nurchim, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Pada Aplikasi Kesehatan Digital,” G-Tech J. Teknol. Terap., vol. 8, no. 4, p. hal 2301-2312, 2024.

[11] R. Nur, R. Abdul, and W. J. Pranoto, “Analisis Sentimen Ulasan Game eFootball 2024 Pada Playstore menggunakan Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 13, no. 01, p. hal 38-44, 2025.

[12] D. Wijaya, R. A. Saputra, and F. Irwiensyah, “Analisis Sentimen Ulasan Aplikasi Samsat Digital Nasional Pada Google Playstore Menggunakan Algoritma Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, p. hal 2369-2380, 2024, doi: 10.30865/klik.v4i4.1738.

[13] N. Wijaya and E. S. Panjaitan, “Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon,” Build. Informatics, Technol. Sci., vol. 6, no. 2, pp. 921–929, 2024, doi: 10.47065/bits.v6i2.5615.

[14] F. A. Irawan, A. Rialdy, A. Agung, and A. Wahana, “Analisis Sentimen Ulasan Aplikasi Bank Digital Menggunakan Algoritma Naive Bayes,” Explor. J. Comput. Sci. Inf. Technol., vol. 4, no. 2, p. hal 60-68, 2024.

[15] A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.