Implementing the Naïve Bayes Method for Sentiment Classification of Brimo App User Reviews on the Google Play Store
Main Article Content
Abstract
The development of digital technology has encouraged the increasing use of mobile-based banking applications, one of which is Brimo, developed by Bank BRI. User reviews on the Google Play Store reflect the experience and satisfaction level with the application, but the large number of reviews makes the manual analysis process inefficient. This study aims to classify the sentiment of Brimo application user reviews into positive, negative, and neutral categories using the Naïve Bayes method. The data collection technique was carried out using web scraping to retrieve user reviews from the Google Play Store. The analysis process was performed using Google Colab with the Python programming language, through the stages of preprocessing, word weighting with TF-IDF, and classification using the Multinomial Naïve Bayes algorithm. The sentiment analysis results showed that the majority of user reviews were negative (78%), compared to positive reviews (22%). Classification using the Naïve Bayes Model yielded an accuracy of 73.56%, which indicates a reasonably good ability to recognize overall sentiment, but is still affected by data imbalance. The results of this study are expected to provide an overview of user perception and serve as input for developers to improve service quality. The impact of this research is the availability of an artificial intelligence-based analysis model capable of identifying user opinions automatically, quickly, and accurately in supporting the development of digital banking services.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] F. A. Irawan, A. Rialdy, and A. Agung, “Analisis Sentimen Ulasan Aplikasi Bank Digital Menggunakan Algoritma Naive Bayes,” vol. 4, no. 12, pp. 60–68, 2024.
[2] M. A. Hermawan, A. Faqih, G. Dwilestari, T. Informatika, and S. Informasi, “Implementasi Akurasi Model Naive Bayes Menggunakan Smote Dalam Analisis Sentimen Pengguna Aplikasi Brimo,” vol. 13, no. 1, 2025.
[3] A. P. Astuti, S. Alam, and I. Jaelani, “Komparasi Algoritma Support Vector Machine Dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo,” vol. XI, no. 02, pp. 1–7, 2023.
[4] D. Yuliana, A. Ningrum, E. Daniati, M. N. Muzaki, and S. Informasi, “Perbandingan Model BERT dan RNN-LSTM pada Analisis Sentimen Aplikasi BRI Mobile,” vol. 4, no. 2, pp. 75–85, 2025.
[5] M. Umair and E. R. Sutanto, “Analisis Sentimen Ulasan Pengguna Pada Aplikasi BRImo BRI Menggunakan Metode Klasifikasi Algoritma Naive Bayes,” vol. 8, no. April, pp. 1149–1159, 2024, doi: 10.30865/mib.v8i2.7381.
[6] R. R. Suryono, “Analisis sentimen aplikasi x pada google play store menggunakan algoritma naïve bayes dan support vector machine (svm),” vol. 9, no. 3, pp. 1408–1419, 2024.
[7] F. P. Saputra and O. Suria, “Penggabungan Model SVM dan Naive Bayes dengan Pendekatan Soft Voting untuk Analisis Sentimen Tong Tji Tea House Combining SVM and Naive Bayes Models using a Soft Voting Approach for Sentiment Analysis of Tong Tji Tea House,” vol. 14, pp. 2479–2491, 2025.
[8] M. Iqbal, “Penerapan Metode Naïve Bayes Pada Ulasan Aplikasi Reelshort,” vol. 10, no. 1, pp. 49–59, 2025.
[9] E. Suhadi, P. Studi, M. Sistem, U. K. Indonesia, K. Coblong, and K. Bandung, “Analisis Sentimen Aplikasi Bisa Ekspor Pada Ulasan Pengguna,” vol. 9, no. 1, pp. 93–101, 2025.
[10] D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” vol. 15, no. 1, pp. 131–145.
[11] M. R. Pratama, Y. R. Ramadhan, and M. A. Komara, “Analisis Sentimen BRImo dan BCA Mobile Menggunakan Support Vector Machine dan Lexicon Based”.
[12] N. Rahmawati and H. Mulyono, “Panduan Mudah Belajar Framework Laravel,” PT Alex Media Komputindo, vol. 1, no. 2, pp. 104–116, 2018, [Online]. Available: http://jurnalmsi.stikom-db.ac.id/index.php/jurnalmsi/article/view/44/38
[13] N. S. Marga, A. R. Isnain, and D. Alita, “Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” vol. 2, no. 4, pp. 453–463, 2020.
[14] N. Bayes, “Analisis Sentimen Kepuasan Masyarakat terhadap Aplikasi ‘ INFO BMKG ’ menggunakan Naive Bayes , SVM , dan KNN Sentiment Analysis of Public Satisfaction with the ’ INFO BMKG ’,” vol. 14, pp. 1418–1432, 2025.
[15] E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter,” vol. 17, no. 1, pp. 25–38, 2022.
[16] E. F. Baharsyah, T. Hasanah, B. Aviani, C. Wulandari, and U. B. Insan, “Analisis Sentimen Pengguna Terhadap Aplikasi Belajar Online Ruang Guru Pada Ulasan Google Play Store Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” vol. 4, pp. 2965–2979, 2024.