Classification of Starfruit Maturity Using the KNN Algorithm Based on Color

Main Article Content

Muhamad Fadlan Salim
Muhammad Nabil
Alfin Akbar
Samsudin

Abstract

Starfruit is a high-value economic tropical fruit widely used in the food industry. The determination of the fruit's maturity level is typically done manually through visual observation, but this method is subjective and less accurate. This research aims to develop a system to classify the maturity level of starfruit using the K-Nearest Neighbor (KNN) algorithm based on color features in the Hue, Saturation, and Value (HSV) color space. A dataset of 90 images was obtained through an acquisition process using a smartphone camera. This was followed by pre-processing stages, including resizing, segmentation, and HSV feature extraction. The data was split into 80% for training and 20% for testing.The results indicate that the value of the K parameter influences the model's performance, with the highest accuracy obtained at K=7, achieving an accuracy of 94.71%. The overall average accuracy reached 84.54%. These results prove that the KNN algorithm is effective for classifying the maturity level of starfruit based on color characteristics. The developed system has the potential to be an automated sorting solution that is more objective, efficient, and accurate for farmers and agricultural processing industries.

Article Details

Section
Articles

References

[1] S. Yulia Riska and P. Subekti, “klasifikasi level kematangan buah tomat berdasarkan fitur warna menggunakan multi-svm,” 2016.

[2] S. Raysyah, V. Arinal, and D. I. Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” Sistem Informasi |, vol. 8, no. 2, pp. 88–95, 2021.

[3] A. Patriot, S. Pamungkas, N. Nafi’iyah, and N. Q. Nawafilah, “K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L*A*B dan Fitur Statistik,” Jurnal Ilmu Komputer dan Desain Komunikasi Visual, vol. 4, no. 1, 2019.

[4] “jppaudsddd151467”.

[5] I. Rosa and A. Ramadhanu, “Penerapan Algoritma K-Nearest Neighbor(Knn) Dan Pca Untuk Klasifikasi Apel Hijau, Apel Fuji Dan Jeruk,” 2025.

[6] Y. Reswan, R. Toyib, H. Witriyono, and A. Anggraini, “Klasifikasi Tingkat Kematangan Buah Nanas Berdasarkan Fitur Warna Menggunakan Metode K-Nearest Neighbor (KNN),” Jurnal Media Infotama, vol. 20, no. 1, 2024.

[7] R. Kurniawan, A. T. Martadinata, and S. D. Cahyo, “Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5,” Journal of Information System Research (JOSH), vol. 5, no. 1, pp. 302–309, Oct. 2023, doi: 10.47065/josh.v5i1.4408.

[8] C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 1–6, Jan. 2019, doi: 10.30591/jpit.v4i1.1267.

[9] Andika Firmansya, Abdullah, Samsudin” Rancang Bangun Sistem Klasifikasi Biji Pinang Menggunakan Metode Nearest Mean Classifier Berbasis Android, Sistemasi, vo.10, No.1 2022, DOI: https://doi.org/10.32520/stmsi.v10i1.1207