Analysis of Transaction Patterns and User Preferences in the DANA Application Using the Apriori Algorithm for Digital Wallet Service Optimization
Main Article Content
Abstract
DANA emerges as a practical solution for conducting fast, efficient, and secure financial transactions. However, its rapid growth presents a new challenge for developers: understanding user transaction patterns and behavior in depth. Each user has different preferences and habits; some regularly use the bill payment feature, others more frequently perform top-ups and purchase mobile credit, while some utilize the balance transfer feature. Data processing results reveal that the combination of Top-Up and Electricity Bill payments has a support value of 60% and a confidence of 85.7%. In contrast, the combination of Electricity Bill Payment ke Top-Up shows the highest confidence value of 100%. This indicates that almost all users who pay electricity bills will always top up their balance before transacting. Analyzing these transaction patterns is crucial as it provides valuable insights for developers to optimize features, enhance service personalization, and design user behavior-based promotional strategies.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), 1994.
[2] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. San Francisco: Morgan Kaufmann, 2012.
[3] Otoritas Jasa Keuangan (OJK), Laporan Perkembangan Fintech di Indonesia 2023. Jakarta: OJK, 2023.
[4] Bank Indonesia, Statistik Sistem Pembayaran Indonesia 2024. Jakarta: Bank Indonesia, 2024.
[5] A. Susanto, “Analisis Pola Pembelian Konsumen Menggunakan Algoritma Apriori,” Jurnal Sistemasi, vol. 11, no. 2, pp. 145–154, 2022.
[6] D. Rahmawati, “Penerapan Algoritma Apriori pada Pola Transaksi Pengguna ShopeePay,” Jurnal Informatika, vol. 14, no. 3, pp. 221–230, 2023.
[7] F. Wibowo, “Implementasi Data Mining pada E-Commerce Menggunakan Algoritma Apriori,” Jurnal Teknologi dan Sistem Informasi, vol. 9, no. 1, pp. 33–40, 2021.
[8] M. Susanto and I. Rahman, “Analisis Pola Transaksi Sistem Pembayaran Digital Menggunakan Metode Apriori,” Jurnal Ilmiah Komputer dan Informatika, vol. 8, no. 4, pp. 410–419, 2022.
[9] DailySocial.id, Fintech Report Indonesia 2024. Jakarta: DailySocial Research, 2024.
[10] T. Purwanto, “Pemanfaatan Data Mining untuk Analisis Perilaku Pelanggan Dompet Digital,” Prosiding Seminar Nasional Teknologi Informasi (SNTI), 2023.