Classification of Sentiment in User Reviews of the Shopee App on Google Play Store Using the Naive Bayes Method
Main Article Content
Abstract
There is currently no relevant and systematic method that can classify reviews into positive and negative groups on the Shopee online shopping application. This study aims to classify reviews in order to provide solutions for the Shopee application in improving its services and customer satisfaction. This analysis is a sentiment classification relying on the Naive Bayes method, consisting of 1,000 reviews from Google Playstore. After training and testing the data with an 80% training data and 20% test data split, the model produced an accuracy value of 0.85, precision of 0.79, recall of 0.95, and an F1-score of 0.86. These values indicate that the model is capable of classifying review sentiment with a high degree of accuracy and a good balance between precision and recall. The model proved to be superior in recognizing reviews with negative sentiment compared to positive sentiment, where the recall for the negative class reached 0.96, while for the positive class it was 0.75. This study provides insight into user perceptions of Shopee and helps the application improve the user experience on the platform.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] J. Edukasi, B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” vol. 4, no. 2, pp. 113–118, 2018.
[2] E. Subowo, F. A. Artanto, I. Putri, and W. Umaedi, “BLTSM untuk analisis sentimen berbasis aspek pada aplikasi belanja online dengan cicilan,” vol. XII, no. Ii, pp. 132–140, 2022.
[3] C. Cahyaningtyas, Y. Nataliani, I. R. Widiasari, F. T. Informasi, U. Kristen, and S. Wacana, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” vol. 18, no. 2, pp. 173–184, 2021.
[4] E. H. Muktafin and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” pp. 32–42, 2020, doi: 10.30864/eksplora.v10i1.390.
[5] J. J. A. Limbong, I. Sembiring, K. D. Hartomo, U. Kristen, and S. Wacana, “Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor Analysis of Review Sentiment Classification on E-Commerce Shopee Word Cloud Based with Naïve Bayes and K-Nearest Neighbor Methods,” vol. 9, no. 2, pp. 347–356, 2022, doi: 10.25126/jtiik.202294960.
[6] M. Saifurridho, Martanto, and U. Hayati, “Analisis Algoritma K-Nearest Neighbor terhadap Sentimen Pengguna Aplikasi Shopee,” vol. 10, no. 1, pp. 21–26, 2024. doi:https://doi.org/10.54914/jit.v10i1.1054
[7] R. L. Simanjuntak, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Shopee Dengan Menggunakan Algoritma Naïve Bayes,” vol. 3, no. 3, 2023. doi:https://doi.org/10.55606/teknik.v3i3.2411
[8] A. Nurrusyifa, D. N. W. Ramadhani, E. D. Trisnadewi, E. Octareny, F. N. Afifah, G. N. Fadillah, L. T. Salsabiella, M. Indriayu, M. F. K. Ishaq, N. A. Pramudiasari, and R. Qurniawan, “‘Membangun toko kelontong berbasis digital di palur kulon dengan Loyverse POS,’” pp. 76–87, 2024. doi:xxxxx
[9] N. A. C. A, D. H. Citra, and W. Purnama, “The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” vol. 2, no. April, pp. 47–54, 2022. doi: https://doi.org/10.57152/malcom.v2i1.195
[10] N. Aditiya, P. Setiaji, and S. Supriyono, “Analisis Sentimen Kepuasan Masyarakat terhadap Aplikasi ‘ INFO BMKG ’ menggunakan Naive Bayes , SVM , dan KNN Sentiment Analysis of Public Satisfaction with the ’ INFO BMKG ’,” vol. 14, pp. 1418–1432, 2025. doi:https://doi.org/10.32520/stmsi.v14i3.5223
[11] T. Puspa, R. Sanjaya, A. Fauzi, A. Fitri, and N. Masruriyah, “Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine Analysis of review sentiment on shopee e-commerce using the naive bayes algorithm and support vector machine,” vol. 4, pp. 16–26, 2023, doi: 10.37373/infotech.v4i1.422.
[12] V. No, “Edumatic : Jurnal Pendidikan Informatika,” vol. 5, no. 2, pp. 233–242, 2021, doi: 10.29408/edumatic.v5i2.4089.
[13] E. Febriyanti, Z. Rifai, S. N. Hasanah, D. F. Wijayanti, L. Suhening, and L. Frastika, “Pemanfaatan media sosial facebook sebagai media pemasaran produk,” Conf. Inf. Technol. Inf. Syst. Electr. Eng., pp. 254–257, 2017.
[14] K. S. Putri, I. R. Setiawan, A. Pambudi, A. Sentimen, and N. B. Classifier, “‘Technologia’ Vol 14, No. 3, Juli 2023 227 Analisis sentimen terhadap brand skincare lokal menggunakan Naïve Bayes Classifier,” vol. 14, no. 3, pp. 227–232, 2023.
[15] N. Putu, G. Naraswati, D. C. Rosmilda, D. Desinta, P. D. Statistika, and P. S. Stis, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” vol. 10, pp. 228–238, 2021.
[16] B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes,” vol. 6, no. 2, pp. 220–225, 2022.
[17] F. P. Saputra and O. Suria, “Penggabungan Model SVM dan Naive Bayes dengan Pendekatan Soft Voting untuk Analisis Sentimen Tong Tji Tea House Combining SVM and Naive Bayes Models using a Soft Voting Approach for Sentiment Analysis of Tong Tji Tea House,” vol. 14, pp. 2479–2491, 2025.
[18] Z. Ayu Nuansa Gumilang, “Implementasi Naïve Bayes Classifier dan Asosiasi untuk Analisis Sentimen Data Ulasan Aplikasi E-Commerce Shopee pada Situs Google Play,” 2018.