Designing an Expert System for Molly Fish Diseases Using Forward Chaining

Main Article Content

M Akbar Riwanto
Muhammad Ari Ardana
Kawet Mujiono

Abstract





Ornamental fish farming, especially Molly fish (Poecilia sphenops), is becoming increasingly popular due to its high aesthetic value and ease of care. However, the high mortality rate of fish due to disease outbreaks is a major obstacle for farmers, especially those who do not have sufficient knowledge about the symptoms and treatment of fish diseases. This study aims to design an expert system for diagnosing Molly fish diseases using the forward chaining method as a tool for early identification based on observed symptoms. The study was conducted using a descriptive qualitative approach that focused on non-numerical and interpretive exploration of the phenomenon, without conducting statistical testing or direct system implementation. The results of the study produced a conceptual design of an expert system that covers 25 types of diseases, 40 main symptoms, and 25 inference rules based on if-then logic as the basis for diagnostic reasoning. Conceptually, this system is expected to help farmers recognize Molly fish diseases more systematically and efficiently, as well as serve as the basis for the development of artificial intelligence technology applications in aquaculture and ornamental fisheries





Article Details

Section
Articles

References

[1] R. P. E. Yanong, “Cryptocaryon irritans Infections (Marine White Spot Disease) in Fish 1,” 2020. [Online]. Available: https://edis.ifas.ufl.

[2] Rahman, Sukenda, S. Nuryati, and D. Hidayatullah, “Infektivitas parasit Ichtyophthirius multifiliis yang disimpan pada suhu rendah”.

[3] R. Francis, R. Yanong, and D. Pouder, “Ichthyophthirius multifiliis (White Spot) Infections in Fish 1.” [Online]. Available: https://edis.ifas.ufl.edu

[4] M. Soni, Q. A. Qureshi, M. Mishra, C. S. Nishad, B. Chhaba, and S. A. Das, “Common Aeromonas Infections in Ornamental Fishes: A review,” Biological Forum-An International Journal, vol. 13, no. 2, p. 433, 2021, [Online]. Available: www.researchtrend.net

[5] a. G. Mashadi and R. Assareh, “Bacterial Study of Fin Rot in Brown Trout by API20E”.

[6] T. Lieke, T. Meinelt, S. H. Hoseinifar, B. Pan, D. L. Straus, and C. E. W. Steinberg, “Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases,” May 01, 2020, Wiley-Blackwell. doi: 10.1111/raq.12365.

[7] H.-S. Cho, M. S. Kim, Y. J. Choi, and P. Shin, “Piscinoodinium sp., a parasitic dinoflagellate infection in the imported ornamental freshwater betta fish (Betta splendens) in Korea”.

[8] D. G. de S. Ramos, “Infection outbreak for Piscinoodinium pillulare in Piaractus brachypomus from aquaculture farm in Brazilian cerrado,” International Journal of Hydrology, vol. 4, no. 3, pp. 97–98, May 2020, doi: 10.15406/ijh.2020.04.00231.

[9] E. Ferraz and C. Sommerville, “DISEASES OF AQUATIC ORGANISMS Dis Ayuat Org Pathology of Piscinoodinium spa (Protozoa: Dinoflagellida), parasites of the ornamental freshwater catfishes Corydoras spp. and Brochis splendens (Pisces: Callichthyidae),” 1998.

[10] R. D. Barde and M. M. V Baig, “Sustainable Humanosphere A Review of Saprolegnia Infection in Freshwater Fishes and Control of the Saprolegniosis,” 2020.

[11] P. C. Lindholm‐Lehto and P. Pylkkö, “Saprolegniosis in aquaculture and how to control it?,” Aquaculture, Fish and Fisheries, vol. 4, no. 4, Aug. 2024, doi: 10.1002/aff2.200.

[12] I. Ashrafi Tamai, S. Asadi, S. Mohammadipour, and K. Nazarpouri, “Scientific report Report of Saprolegnia salmonis infection in ornamental fish,” Caspian Journal of Veterinary Science, vol. 1, no. 2, pp. 169–174, 2024, doi: 10.22034/cjvs.2024.210716.

[13] R. Thenardo and M. Siddik, “Sistem Pakar Mendiagnosa Penyakit Ikan Hias Air Tawar Menggunakan Metode Forward Chaining dan Theorema Bayes Berbasis Web,” Jurnal Mahasiswa Aplikasi Teknologi Komputer dan Informasi, vol. 2, no. 2, pp. 68–76, 2020.

[14] S. Alacsel, “Forward Chaining Methods in Expert Systems in the Prevention and Treatment of Carp Diseases,” Jurnal Informasi dan Teknologi, pp. 13–18, Sep. 2022, doi: 10.37034/jidt.v5i1.227.

[15] H. Al Qarim Ginting, D. Setiawan, P. Studi Sistem Informasi, S. Triguna Dharma, and P. Studi Sistem Informasi Dosen Pembimbing, “E-Diagnosa Penyakit Pada Ikan Cupang (Betta Splendens) Dengan Menggunakan Metode Certainty Factor.” [Online]. Available: https://ojs.trigunadharma.ac.id

[16] Suwarsito Suwarsito and Mustafidah Hindayati, “Diagnosa Penyakit Ikan Menggunakan Sistem Pakar,” Jurnal Informatika, 2016.

[17] E. Yusnita, H. Aprilianto, J. A. Yani, K. M. 33, and L. Banjarbaru, “Sistem Pakar Diagnosa Penyakit Ikan Nila Menggunakan Dempster Shafer Berbasis Web”.

[18] R. Dewi Indahsari and D. K. Lia, “Sistem Pakar Untuk Mendiagnosa Penyakit Pada Ikan Hias Air Tawar Dengan Fuzzy Inference System,” 2019.